SNPs Meet CNVs in Genome-Wide Association Studies: HGV2007 Meeting Report
نویسندگان
چکیده
s of the meeting and an expanded version of the meeting report can be found on the meeting Web sites (http:// hgv2007.nci.nih.gov; http://www.tcag.ca/hgv2008) and in Text S1 (abstracts) and Text S2 (meeting report). Highlights of the presentations include the considerable progress reported by Stephen Chanock and colleagues at the National Cancer Institute (Bethesda, Maryland, United States) in recent months on the identification of genetic variants that predispose to Published April 25, 2008 This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Funding: Meeting supported in part by grants from the National Human Genome Research Institute (R13 HG003953), the McLaughlin Centre for Molecular Medicine, Genoma España, the Catalan Government, and the Spanish Ministry of Education and Science (MEC). Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] (XE); [email protected] (AB) Citation: Estivill X, Cox NJ, Chanock SJ, Kwok P-Y, Scherer SW, et al. (2008) SNPs Meet CNVs in Genome-Wide Association Studies: HGV2007 Meeting Report. PLoS Genet 4(4): e1000068. doi:10.1371/journal.pgen.1000068 Editor: Greg Gibson, The University of Queensland, Australia PLoS Genetics | www.plosgenetics.org 1 April 2008 | Volume 4 | Issue 4 | e1000068 common human cancers; the studies were based on a stepwise approach used in GWAS followed by meta-analysis on data from several other groups. Xavier Estivill (Center for Genomic Regulation, Barcelona, Spain) reported a common genomic feature of disorders for which CNVs have been detected, namely the presence of segmental duplications in the vicinity. Moreover, all CNV loci that have been found associated with common disorders are both complex and multi-allelic, making it difficult to tag these CNVs with SNPs. Pui-Yan Kwok (University of California San Francisco, California, United States) sounded a cautionary note regarding quality control of genotype data in the context of automated genotype data production. In the area of sequencing the individual genome, one of the most challenging problems is the assembly of the sequences and the large number of differences between sequences, including many structural variation changes. Samuel Levy (J. Craig Venter Institute, Rockville, Maryland, United States) reported the details of the sequencing, assembly, and variant detection in the genome of Craig Venter. Using newly developed genome assembly strategies and comparative genome-to-genome mapping methods, they identified 25 Mb of diploid sequence differences, representing more than 4 million DNA variants, thereby increasing the estimate of DNA sequence differences between unrelated humans to 5–10 times more than previously thought. Sanjeev Bhaskar (Wellcome Trust Sanger Institute, Hinxton, United King) and Ivo Gut (Centre National de Génotypage, Evry Cedex, France) described their efforts in high-throughput, targeted sequencing using a variety of approaches. George Church (Harvard Medical School and Massachusetts Institute of Technology, Boston, Massachusetts, United States) showed that 1% of the genome harboring most causative alleles for medical and nonmedical traits could be targeted for sequencing using strategies he and others have developed. He pointed out that by combining these approaches with paired-end tags for rearrangements (such as those described by Jan Korbel at Yale University, New Haven, Connecticut, United States) and allele-specific RNA quantification, an affordable analysis of the human genome could be achieved at the individual level. The intensity of CNV research was evident in the presentations of several groups at the HGV2007 meeting. For example, Steve Scherer (Hospital for Sick Children, Toronto, Ontario, Canada) reported the recent findings on chromosome rearrangements and imbalances in autism spectrum disorders, with evidence showing that chromosome rearrangements in autism are likely to be involved in 10%–20% of all cases. Barbara Trask (Fred Hutchinson Cancer Research Center, Seattle, Washington, United States) reported on the important role CNVs played in the evolution of three families of chemosensory receptors (olfactory receptors and two classes of vomeronasal receptors [V1Rs and V2Rs]) that help an organism interact with its environment. George Perry and Charles Lee (Brigham and Women’s Hospital, Boston, Massachusetts, United States) presented data about the distribution of amylase gene (AMY1) copies in different populations that showed a positive or directional selection on AMY1 copy number in human populations with diets high in starch but neutral evolution on AMY1 copy number in low-starch populations. Joris Veltman (Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands) presented the use of dense bacterial artificial chromosome (BAC) arrays and SNP arrays to identify CNVs underlying mental retardation. The use of parallel approaches and data sharing by investigators from different countries has allowed them to identify new syndromes that were previously unrecognized. Matthew Hurles (The Wellcome Trust Sanger Institute, Hinxton, United Kingdom) reported on the use of ultrasequencing technologies to identify and characterize structural variation. He also presented data on the development of a comprehensive map for common CNVs using high-density oligonucleotide arrays with 42 million probes across the genome. Finally, he stressed the need for improved methods for CNV genotyping and quantification to deal with multiallelic CNVs and with differential biases in assessing CNVs in cases and controls. To facilitate the precise quantification of copy numbers of particular genes in subjects, John Armour (University of Nottingham, Nottingham, United Kingdom) described the development of paralogue ratio tests (PRTs) that improve the precision, economy, and throughput for complex CNV genotyping. Combining CNV and SNP data in GWAS is a major challenge for statistical geneticists, and a number of groups presented strategies to tackle this problem. Nancy Cox (University of Chicago, Chicago, Illinois, United States) reviewed general approaches for direct and indirect assessment of CNV information to study common disorders. She reported on the use of TUNA (Testing Untyped Alleles) to utilize linkage disequilibrium (LD) to interrogate CNVs for which multilocus LD tags can be constructed. Don Conrad (University of Chicago, Chicago, Illinois, United States) described new methodology for integrating CNVs into the study of genetic traits. Iuliana Ionita (Harvard University, Boston, Massachusetts, United States) reported on the development of an extension of a family-based association test (FBAT) approach to analyze CNV data with family-based designs. Vivian Cheung (University of Pennsylvania, Philadelphia, Pennsylvania, United States) reported on research to identify genetic variation affecting interindividual gene expression. Of 3,500 genes with variable expression levels, 235 were associated with SNPs (80% in trans, 5% in cis, and 15% with multiple effects) in a GWAS. Manolis Dermitzakis (Wellcome Trust Sanger Institute, Hinxton, United Kingdom presented data on the widespread genetic variation in mRNA levels of many genes across populations. Moreover, many detected associations between gene expression levels and SNPs are shared across human populations, and that signal is concentrated, within 100 kb from the promoter, symmetrically around transcription start sites. Chris Ponting (University of Oxford, Oxford, United Kingdom) discussed the elevated density of genes, evolutionary rates, and gene functions, noting data consistent with the possibility that some of these regions have been positively selected in the human population due to advantageous gene dosage effects of copy number variants. Jaume Bertranpetit (Pompeu Fabra University, Barcelona, Spain) discussed the possibilities of computing population recombination rates from SNP frequency data. They found that most of the variation is among major human groups and a minor component of population variation is within continents, with most recombination hotspots conserved among human populations. Esteban González-Burchard (University of California San Francisco, San Francisco, California, United States) provided fundamental evidence of genetic differences between racial and ethnic populations relevant to differences in genetic risk for Alzheimer disease and HIV resistance. Gilles Thomas (National Cancer Institute, Bethesda, Maryland, United States) presented data on population stratification in two genomewide studies in breast cancer and prostate cancer. Their results showed evidence of population structure on the European continent and pointed to the need to correct for population stratification in searching for association in European populations. In addition to the GWAS approach, Angel Carracedo (University of Santiago de Compostela, Galicia, Spain) discussed classical approaches to identifying genetic variations associated HGV2007 Meeting Report PLoS Genetics | www.plosgenetics.org 2 April 2008 | Volume 4 | Issue 4 | e1000068 with both toxicity and efficacy. He emphasized the challenges of the current applications in clinical practice and the changes in labeling that have been recommended by the regulatory agencies in Europe and United States (European Medicines Agency [EMEA] and Food and Drug Administration [FDA], respectively) for about ten drugs). Another important topic of discussion at the meeting was the current status and future needs for central genomic databases in the area of human variation. Yum Lina Yip (Swiss Institute of Bioinformatics, Geneva, Switzerland) gave a presentation on archiving single amino acid polymorphisms in the UniProt/SwissProt knowledge base, with .30,000 single amino acid polymorphisms (SAPs) in about 6,000 human proteins already archived and many more to come. Andrew Devereau (National Genetics Reference Laboratory, Manchester, United Kingdom) reported on the use of a variation database for diagnostic molecular laboratories. This tool allows data from different laboratories and different sources to be integrated and analyzed for the interpretation of its clinical significance. Anthony Brookes (University of Leicester, Leicester, United Kingdom) presented progress toward developing HGVbaseG2P, a database of genotype-to-phenotype (G2P) relationships, which aims to pull together a comprehensive view of the world’s genetic association study findings. He also described GEN2PHEN (http://www. gen2phen.org/), a European Commission Integrated Project designed to help provide globally relevant solutions for G2P databasing. Ewan Birney (European Bioinformatics Institute, Hinxton, United Kingdom) presented an overview of the Ensembl infrastructures for genomic information, from its storage through to analysis and visualization. The data included variation information for more than 6,000 human individuals and resequencing data from six. James Ostell (National Library of Medicine, Bethesda, Maryland, United States) described several of the resources of the National Center for Biotechnology Information (NCBI), including the Database of Genotype and Phenotype (dbGaP), which holds phenotype data from long-term clinical and cohort studies, and is linked to large-scale genotype results on the participants or to medical sequencing data in support of GWAS. Lincoln Stein (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States) presented the new features and tools of the HapMap Web site and discussed progress toward providing views of resequencing data, particularly as it moves toward sequencing entire human genomes. Carole Charlier (University of Liège, Wallonia, Belgium) reported on the use of Patrocles, a database of polymorphic miRNA-mediated gene regulation that assists in the identification of SNPs that affect such regulation. Lars Feuk (The Hospital for Sick Children, Toronto, Ontario, Canada) described the latest version of the Database of Genomic Variants, which contains all the published CNVs in the genome. This database faces the challenges of definition of CNV boundaries, detection of false positives, and determination of accurate population frequency information. The meeting also devoted discussion to the ethical aspects of individualized sequencing. Anne Cambon-Thomsen (Inserm and University Paul Sabatier Toulouse III, Toulouse, France) reviewed the issue of human biobanks for studying human genome variation. She reported on the networking of biobanks (Public Population Project in Genomics, http://www.p3gconsortium.org/; European Biobanks, http://www.biobanks.eu/) and described some of the conflicting interests that have to be balanced, such as participant privacy, potential risks and benefits, methodological guidance for interpretation and use of data, professional recognition of investigators, sharing of samples and data, intellectual property rights, and characteristics of a centralized data repository or other repository. The Sitges meeting also included more than 150 posters presented over the three-day meeting. The prevailing view was that each attendee left the meeting with new ideas in a field that is moving rapidly at the cutting edge of discovery of the genetic variants that will define disease predisposition and help to uncover new biological pathways for understanding human health and disease. The HGV2008 meeting (http://www.tcag.ca/hgv2008/) will be held 15–17 October 2008, in Toronto, Canada. That meeting will focus, in part, on further steps for the sequencing and resequencing of the human genome. Supporting Information Text S1 Meeting Abstracts: Meeting Program Booklet Including the Meeting Agenda and All Abstracts Found at: doi:10.1371/journal.pgen.1000068.s001 (14.7 MB PDF) Text S2 Full Meeting Report: An extended version of the meeting report Found at: doi:10.1371/journal.pgen.1000068.s002 (0.08 MB DOC) HGV2007 Meeting Report PLoS Genetics | www.plosgenetics.org 3 April 2008 | Volume 4 | Issue 4 | e1000068
منابع مشابه
Copy Number Variants and Common Disorders: Filling the Gaps and Exploring Complexity in Genome-Wide Association Studies
Genome-wide association scans (GWASs) using single nucleotide polymorphisms (SNPs) have been completed successfully for several common disorders and have detected over 30 new associations. Considering the large sample sizes and genome-wide SNP coverage of the scans, one might have expected many of the common variants underpinning the genetic component of various disorders to have been identifie...
متن کاملA Study of CNVs As Trait-Associated Polymorphisms and As Expression Quantitative Trait Loci
We conducted a comprehensive study of copy number variants (CNVs) well-tagged by SNPs (r(2)≥ 0.8) by analyzing their effect on gene expression and their association with disease susceptibility and other complex human traits. We tested whether these CNVs were more likely to be functional than frequency-matched SNPs as trait-associated loci or as expression quantitative trait loci (eQTLs) influen...
متن کاملGenome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants
We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of up to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q2...
متن کاملUsing GWAS Data to Identify Copy Number Variants Contributing to Common Complex Diseases
Copy number variants (CNVs) account for more polymorphic base pairs in the human genome than do single nucleotide polymorphisms (SNPs). CNVs encompass genes as well as noncoding DNA, making these polymorphisms good candidates for functional variation. Consequently, most modern genome-wide association studies test CNVs along with SNPs, after inferring copy number status from the data generated b...
متن کاملGenome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants
We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of up to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Genetics
دوره 4 شماره
صفحات -
تاریخ انتشار 2008